Improved Neural Text Attribute Transfer with Non-parallel Data

نویسندگان

  • Igor Melnyk
  • Cícero Nogueira dos Santos
  • Kahini Wadhawan
  • Inkit Padhi
  • Abhishek Kumar
چکیده

Text attribute transfer using non-parallel data requires methods that can perform disentanglement of content and linguistic attributes. In this work, we propose different improvements that enable the encode-decode framework to cope with text attribute transfer from non-parallel data. We perform experiments on the sentiment transfer task using two different datasets. For both datasets, our proposed method outperforms a strong baseline in two of the three employed evaluation metrics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استخراج پیکره‌ موازی از اسناد قابل‌مقایسه برای بهبود کیفیت ترجمه در سیستم‌های ترجمه ماشینی

Data used for training statistical machine translation method are usually prepared from three resources: parallel, non-parallel and comparable text corpora. Parallel corpora are an ideal resource for translation but due to lack of these kinds of texts, non-parallel and comparable corpora are used either for parallel text extraction. Most of existing methods for exploiting comparable corpora loo...

متن کامل

Cross-lingual Transfer for Unsupervised Dependency Parsing Without Parallel Data

Cross-lingual transfer has been shown to produce good results for dependency parsing of resource-poor languages. Although this avoids the need for a target language treebank, most approaches have still used large parallel corpora. However, parallel data is scarce for low-resource languages, and we report a new method that does not need parallel data. Our method learns syntactic word embeddings ...

متن کامل

Modeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm

An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....

متن کامل

Articulatory Modeling for Pronunciation Error Detection without Non-Native Training Data Based on DNN Transfer Learning

Aiming at detecting pronunciation errors produced by second language learners and providing corrective feedbacks related with articulation, we address effective articulatory models based on deep neural network (DNN). Articulatory attributes are defined for manner and place of articulation. In order to efficiently train these models of non-native speech without such data, which is difficult to c...

متن کامل

Zero-Shot Style Transfer in Text Using Recurrent Neural Networks

Zero-shot translation is the task of translating between a language pair where no aligned data for the pair is provided during training. In this work we employ a model that creates paraphrases which are written in the style of another existing text. Since we provide the model with no paired examples from the source style to the target style during training, we call this task zero-shot style tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09395  شماره 

صفحات  -

تاریخ انتشار 2017